Limit groups and groups acting freely on $\bbR^n$-trees

نویسنده

  • Vincent Guirardel
چکیده

We give a simple proof of the finite presentation of Sela's limit groups by using free actions on R n-trees. We first prove that Sela's limit groups do have a free action on an R n-tree. We then prove that a finitely generated group having a free action on an R n-tree can be obtained from free abelian groups and surface groups by a finite sequence of free products and amalgamations over cyclic groups. As a corollary, such a group is finitely presented, has a finite classifying space, its abelian subgroups are finitely generated and contains only finitely many conjugacy classes of non-cyclic maximal abelian subgroups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limit groups and groups acting freely on R n-trees.

We give a simple proof of the finite presentation of Sela's limit groups by using free actions on R n-trees. We first prove that Sela's limit groups do have a free action on an R n-tree. We then prove that a finitely generated group having a free action on an R n-tree can be obtained from free abelian groups and surface groups by a finite sequence of free products and amalgamations over cyclic ...

متن کامل

Limit groups and groups acting freely on R–trees

We give a simple proof of the finite presentation of Sela’s limit groups by using free actions on Rn–trees. We first prove that Sela’s limit groups do have a free action on an Rn–tree. We then prove that a finitely generated group having a free action on an Rn–tree can be obtained from free abelian groups and surface groups by a finite sequence of free products and amalgamations over cyclic gro...

متن کامل

Groups with free regular length functions in Zn

This is the first paper in a series of three where we take on the unified theory of non-Archimedean group actions, length functions and infinite words. Our main goal is to show that group actions on Zn-trees give one a powerful tool to study groups. All finitely generated groups acting freely on R-trees also act freely on some Zn-trees, but the latter ones form a much larger class. The natural ...

متن کامل

ON QUASI UNIVERSAL COVERS FOR GROUPS ACTING ON TREES WITH INVERSIONS

Abstract. In this paper we show that if G is a group acting on a tree X with inversions and if (T Y ) is a fundamental domain for the action of G on X, then there exist a group &tildeG and a tree &tildeX induced by (T Y ) such that &tildeG acts on &tildeX with inversions, G is isomorphic to &tilde G, and X is isomorphic to &tildeX. The pair (&tilde G &tildeX) is called the quasi universal cover...

متن کامل

A Splitting Theorem for Groups Acting on Quasi-trees

It is well known that a group is free if and only if it acts freely without inversions on a tree. We prove a generalisation of this fact by deening a quasi-tree to be a graph with a bound on the size of its simple loops. It is shown that a nitely generated group acting freely on such a graph is isomorphic to a free product of free groups and nite groups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره cs.DL/0307049  شماره 

صفحات  -

تاریخ انتشار 2003